비선형 (2) 썸네일형 리스트형 인공 신경망 기초 Perceptron Perceptron은 초기의 인공 신경망으로, 사람의 신경망을 모방하여 다수의 입력을 받아서 하나의 결과를 내보내는 알고리즘입니다. 각 입력에 가중치를 곱하여 임계치를 기준으로 정보$($데이터$)$를 전달합니다. 단층 퍼셉트론은 입력층과 출력층으로 구성되며, 다층 퍼셉트론은 입출력 사이에 은닉층이 추가되어있으며, 은닉층에서 비선형으로 만들어주는 활성화함수가 있다. 더보기 예를 들어, Perceptron을 사용하여 AND 게이트를 구현한다고 가정해보겠습니다. AND 게이트는 두 입력이 모두 참일 때만 출력이 참이 되는 논리 연산입니다. Perceptron은 두 입력에 대한 가중치를 곱하고 임계치를 적용하여 출력을 계산할 수 있습니다. def perceptron(input1, input2.. [통계] Day 3-1 상관 분석 데이터 분석과 통계 분야에서 중요한 개념 1. 상관 분석 $($Correlation Analysis$)$: - 변수 간의 관련성을 측정하는 통계 기법. - 두 변수 사이의 선형 관계 정도를 파악하며, 두 변수 간의 상관계수로 표현됨. - 피어슨 상관계수, 스피어만 상관계수, 켄달의 타우 등이 있음. 2. 피어슨 계수 $($Pearson Correlation Coefficient$)$: - 두 연속형 변수 간의 선형 상관관계를 측정하는 방법. - -1과 1 사이의 값을 가지며, 0은 상관관계가 없음을 나타냄. - 피어슨 상관계수 공식: \[ r = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sqrt{\sum{(x_i - \bar{x})^2} \cdot \sum{(y_i.. 이전 1 다음