본문 바로가기

IT/Python

[프로그래머스] Lv.2 두 큐 합 같게 만들기 [Python]

728x90

두 개의 큐가 주어지면 다음 작업을 통해 각 큐의 합이 서로 같게 만드는 최소 횟수를 구하는 문제

작업: 한 큐의 첫 원소를 다른 큐의 마지막 원소로 옮기는 작업을 한 횟수로 취급

 

더보기

문제 설명
길이가 같은 두 개의 큐가 주어집니다. 하나의 큐를 골라 원소를 추출$($pop$)$하고, 추출된 원소를 다른 큐에 집어넣는$($insert$)$ 작업을 통해 각 큐의 원소 합이 같도록 만들려고 합니다. 이때 필요한 작업의 최소 횟수를 구하고자 합니다. 한 번의 pop과 한 번의 insert를 합쳐서 작업을 1회 수행한 것으로 간주합니다.

큐는 먼저 집어넣은 원소가 먼저 나오는 구조입니다. 이 문제에서는 큐를 배열로 표현하며, 원소가 배열 앞쪽에 있을수록 먼저 집어넣은 원소임을 의미합니다. 즉, pop을 하면 배열의 첫 번째 원소가 추출되며, insert를 하면 배열의 끝에 원소가 추가됩니다. 예를 들어 큐 [1, 2, 3, 4]가 주어졌을 때, pop을 하면 맨 앞에 있는 원소 1이 추출되어 [2, 3, 4]가 되며, 이어서 5를 insert하면 [2, 3, 4, 5]가 됩니다.

다음은 두 큐를 나타내는 예시입니다.
queue1 = [3, 2, 7, 2]
queue2 = [4, 6, 5, 1]


두 큐에 담긴 모든 원소의 합은 30입니다. 따라서, 각 큐의 합을 15로 만들어야 합니다. 예를 들어, 다음과 같이 2가지 방법이 있습니다.

  1. queue2의 4, 6, 5를 순서대로 추출하여 queue1에 추가한 뒤, queue1의 3, 2, 7, 2를 순서대로 추출하여 queue2에 추가합니다. 그 결과 queue1은 [4, 6, 5], queue2는 [1, 3, 2, 7, 2]가 되며, 각 큐의 원소 합은 15로 같습니다. 이 방법은 작업을 7번 수행합니다.
  2. queue1에서 3을 추출하여 queue2에 추가합니다. 그리고 queue2에서 4를 추출하여 queue1에 추가합니다. 그 결과 queue1은 [2, 7, 2, 4], queue2는 [6, 5, 1, 3]가 되며, 각 큐의 원소 합은 15로 같습니다. 이 방법은 작업을 2번만 수행하며, 이보다 적은 횟수로 목표를 달성할 수 없습니다.
    따라서 각 큐의 원소 합을 같게 만들기 위해 필요한 작업의 최소 횟수는 2입니다.

 

길이가 같은 두 개의 큐를 나타내는 정수 배열 queue1, queue2가 매개변수로 주어집니다. 각 큐의 원소 합을 같게 만들기 위해 필요한 작업의 최소 횟수를 return 하도록 solution 함수를 완성해주세요. 단, 어떤 방법으로도 각 큐의 원소 합을 같게 만들 수 없는 경우, -1을 return 해주세요.

 

제한사항

  • 1 ≤ queue1의 길이 = queue2의 길이 ≤ 300,000
  • 1 ≤ queue1의 원소, queue2의 원소 ≤ 109
  • 주의: 언어에 따라 합 계산 과정 중 산술 오버플로우 발생 가능성이 있으므로 long type 고려가 필요합니다.

입출력 예

queue1 queue2 result
[3, 2, 7, 2] [4, 6, 5, 1] 2
[1, 2, 1, 2] [1, 10, 1, 2] 7
[1, 1] [1, 5] -1

https://school.programmers.co.kr/learn/courses/30/lessons/118667

 

deque를 사용해서 FIFO$($선입 선출, first in first out$)$를 빠르게 구현한 코드

두 큐의 합이 홀수면 각 큐의 합이 서로 같아 질 수 없음.

작업을 두 큐의 원소의 총 개수보다 많이 진행하면 처음으로 돌아가서 다시 진행하는 것과 다름 없음 -> 실패

 

서로 같게 만들 수 있다면,

두 큐의 합의 절반을 목표로 잡고, 한 큐의 합을 변수에 저장하고

원소의 이동에 따라서 그 변수 값을 업데이트 하면서 횟수를 세면 된다.

 

from collections import deque

def solution(queue1, queue2):
    sum1 = sum(queue1)
    sum2 = sum(queue2)
    goal = sum1 + sum2
    
    # 각 큐의 합이 서로 같기 위해선느 두 큐의 합이 짝수여야함
    if goal % 2:
        return -1
    
    goal //= 2	# 목표하는 한 큐의 합
    count = 0
    n = len(queue1) + len(queue2)
    
    queue1 = deque(queue1)
    queue2 = deque(queue2)
    
    while goal != sum1:
    	# 횟수가 모든 원소의 개수 이상이 되면, 어떻게 원소를 옮겨도 불가능함을 의미함
        if count >= n:
            return -1
        
        # 원소 이동
        while sum1 > goal:
            tmp = queue1.popleft()
            queue2.append(tmp)
            sum1 -= tmp
            count += 1
        while sum1 < goal:
            tmp = queue2.popleft()
            queue1.append(tmp)
            sum1 += tmp
            count += 1
    return count

 

매번 큐의 합의 구하면, 원소의 개수가 많을 때, 연산 속도가 너무 오래 걸린다.

 

더보기

입출력 예 #1
문제 예시와 같습니다.

입출력 예 #2
두 큐에 담긴 모든 원소의 합은 20입니다. 따라서, 각 큐의 합을 10으로 만들어야 합니다. queue2에서 1, 10을 순서대로 추출하여 queue1에 추가하고, queue1에서 1, 2, 1, 2와 1$($queue2으로부터 받은 원소$)$을 순서대로 추출하여 queue2에 추가합니다. 그 결과 queue1은 [10], queue2는 [1, 2, 1, 2, 1, 2, 1]가 되며, 각 큐의 원소 합은 10으로 같습니다. 이때 작업 횟수는 7회이며, 이보다 적은 횟수로 목표를 달성하는 방법은 없습니다. 따라서 7를 return 합니다.

입출력 예 #3
어떤 방법을 쓰더라도 각 큐의 원소 합을 같게 만들 수 없습니다. 따라서 -1을 return 합니다.